Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We demonstrate electronic sensing of DNA nanostar (NS) condensate. Specifically, we use electrokinetic nanofluidics to observe and interpret how temperature-induced NS condensation affects nanochannel current. The increase in current upon filling a nanochannel with NS condensate indicates that its electrophoretic mobility is about half that of a single NS and its effective ionic strength is ∼ 35% greater than that of 150 mM NaCl in phosphate buffer. 𝜁 -potential measurements before and after exposure to NS show that condensate binds the silica walls of a nanochannel more strongly than individual NS do under identical conditions. This binding increases electroosmotic flow, possibly enough to completely balance, or even exceed, the electrophoretic velocity of NS condensate. Although the current through a flat nanochannel is erratic in the presence of NS condensate, tilting the nanochannel to accumulate NS condensate at one entrance (and away from the other) results in a robust electronic signature of the NS phase transition at temperatures 𝑇𝑐= 𝑓 ([NaCl]) that agree with those obtained by other methods. Electrokinetic nanofluidic detection and measurement of NS condensate thus provides a foundation for novel biosensing technologies based on liquid–liquid phase separation.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Many species of animals exhibit an intuitive sense of number, suggesting a fundamental neural mechanism for representing numerosity in a visual scene. Recent empirical studies demonstrate that early feedforward visual responses are sensitive to numerosity of a dot array but substantially less so to continuous dimensions orthogonal to numerosity, such as size and spacing of the dots. However, the mechanisms that extract numerosity are unknown. Here, we identified the core neurocomputational principles underlying these effects: (1) center-surround contrast filters; (2) at different spatial scales; with (3) divisive normalization across network units. In an untrained computational model, these principles eliminated sensitivity to size and spacing, making numerosity the main determinant of the neuronal response magnitude. Moreover, a model implementation of these principles explained both well-known and relatively novel illusions of numerosity perception across space and time. This supports the conclusion that the neural structures and feedforward processes that encode numerosity naturally produce visual illusions of numerosity. Taken together, these results identify a set of neurocomputational properties that gives rise to the ubiquity of the number sense in the animal kingdom.more » « less
An official website of the United States government
